Do we need a new Internet?
Part 1: Basic Issues

Adrian Perrig
Network Security Group, ETH Zürich
Imagine a building or structure that represents the Internet.
The Internet... an ancient structure... that appears stable and seems unchangeable
More like today’s Internet …
Problem 1: Availability

- Transparency
- Control
- Secure E2E Comm
- Availability
Poor Availability

- Well-connected entity: 99.9% availability (86 s/day unavailability) [Katz-Bassett et al., Sigcomm 2012]
- Plug-into-the wall telephones: 99.999% availability (0.86 s/day unavailability)!
- Numerous short-lived outages due to Border Gateway Protocol (BGP) route changes and route convergence delays
- Outages due to misconfigurations
- Outages due to attacks
 - E.g., prefix hijacking, DDoS
Problem 2: Control

- Control
- Secure E2E Comm
- Transparency
Who controls Internet Paths?

- Current Internet offers limited control of paths
- Paths can be hijacked and redirected
Limited Path Control in BGP

- Current Internet offers limited control of paths
 - Border Gateway Protocol (BGP) floods announcements for destinations
 - No inbound traffic control
Who should control Paths?

- Clearly, ISPs need some amount of path control to enact their policies
- How much path control should end domains and end points (sender and receiver) have?
- Control is a tricky issue … how to empower end points without providing too much control?
Problems due to Lack of Path Control

- Limited traffic load balancing for sender and receiver
- No multi-path communication
- No optimization of networking paths for sender and receiver
- Poor availability
 - Outages cannot be circumvented
 - Connection can suddenly break
- Traffic redirection attacks become possible
Problem 3: Transparency

Secure E2E Comm

Transparency
Transparency

- Path transparency
 - Today, sender cannot obtain guarantee that packet will travel along intended path
 - Impossible to gain assurance of packet path
 - Because router forwarding state can be different from routing messages received

- Trust transparency
 - Today, we cannot enumerate trust roots we rely upon
Problem 4: Secure E2E Communication
Fake Certificates lead to Attack

- Adversary misuses fake certificate to impersonate one party to the other (man-in-the-middle attack)
Problems with SSL / TLS Certificates

- Famous case: false Microsoft ActiveX certificate issued by Verisign in January 2001
- VeriSign Hacked, Successfully and Repeatedly, in 2010
 - VeriSign attacks were revealed in a quarterly U.S. Securities and Exchange Commission filing in October 2011
- March 2011: Attack on Commodo reseller, several fraudulent certificates were issued: mail.google.com, www.google.com, login.yahoo.com, login.skype.com, addons.mozilla.org, login.live.com
 - Suggested that attack originated from Iranian IP address
- August 29, 2011: news broke that DigiNotar, a Dutch CA, improperly issued a certificate for all Google domains to an external party
 - Claim: 250 certificates for an unknown number of domains were released
 - Iranian government spied on Iranian citizens' communications with Google email during the month of August 2011
- Stuxnet used compromised certificates from 2 Taiwanese CAs
Non-Scalability of Trust

- As the Internet has grown to encompass a large part of the global population, trust relationships have become heterogeneous: **no single entity trusted by everyone**
 - Complicates construction of entity authentication infrastructures
- Current Internet authentication infrastructures have weak security properties
 - Single points of failure
 - Security of the weakest link
Summary: Which Problems Should we Address?

- High availability: enable end-to-end connectivity despite network disruptions
- Path control: ISP, sender, and receiver, jointly control end-to-end paths
- Transparency
 - Path transparency: sender should be aware of packet’s path
 - Trust transparency: known roots of trust that need to be relied upon
- Resilience to compromised trust roots: limit global scope of certification authorities
For More Information …

- … please see our web page: www.scion-architecture.net
- Chapter 1 of our book “SCION: A secure Internet Architecture”
 - Available from Springer this Summer 2017
 - PDF available on our web site
- Part 2 of this presentation: “Motivations for Change”